9 research outputs found

    A practical method to estimate the resolving power of a chemical sensor array: application to feature selection

    Get PDF
    A methodology to calculate analytical figures of merit is not well established for detection systems that are based on sensor arrays with low sensor selectivity. In this work, we present a practical approach to estimate the Resolving Power of a sensory system, considering non-linear sensors and heteroscedastic sensor noise. We use the definition introduced by Shannon in the field of communication theory to quantify the number of symbols in a noisy environment, and its version adapted by Gardner and Barlett for chemical sensor systems. Our method combines dimensionality reduction and the use of algorithms to compute the convex hull of the empirical data to estimate the data volume in the sensor response space. We validate our methodology with synthetic data and with actual data captured with temperature-modulated MOX gas sensors. Unlike other methodologies, our method does not require the intrinsic dimensionality of the sensor response to be smaller than the dimensionality of the input space. Moreover, our method circumvents the problem to obtain the sensitivity matrix, which usually is not known. Hence, our method is able to successfully compute the Resolving Power of actual chemical sensor arrays. We provide a relevant figure of merit, and a methodology to calculate it, that was missing in the literature to benchmark broad-response gas sensor arrays.Peer ReviewedPostprint (published version

    Bioinspired early detection through gas flow modulation in chemo-sensory systems

    Get PDF
    The design of bioinspired systems for chemical sensing is an engaging line of research in machine olfaction. Developments in this line could increase the lifetime and sensitivity of artificial chemo-sensory systems. Such approach is based on the sensory systems known in live organisms, and the resulting developed artificial systems are targeted to reproduce the biological mechanisms to some extent. Sniffing behaviour, sampling odours actively, has been studied recently in neuroscience, and it has been suggested that the respiration frequency is an important parameter of the olfactory system, since the odour perception, especially in complex scenarios such as novel odourants exploration, depends on both the stimulus identity and the sampling method. In this work we propose a chemical sensing system based on an array of 16 metal-oxide gas sensors that we combined with an external mechanical ventilator to simulate the biological respiration cycle. The tested gas classes formed a relatively broad combination of two analytes, acetone and ethanol, in binary mixtures. Two sets of low-frequency and high-frequency features were extracted from the acquired signals to show that the high-frequency features contain information related to the gas class. In addition, such information is available at early stages of the measurement, which could make the technique suitable in early detection scenarios. The full data set is made publicly available to the community. (C) 2014 Elsevier B.V. All rights reserved.Postprint (author's final draft

    Continuous Spatial Representations in the Olfactory Bulb may Reflect Perceptual Categories

    Get PDF
    In sensory processing of odors, the olfactory bulb is an important relay station, where odor representations are noise-filtered, sharpened, and possibly re-organized. An organization by perceptual qualities has been found previously in the piriform cortex, however several recent studies indicate that the olfactory bulb code reflects behaviorally relevant dimensions spatially as well as at the population level. We apply a statistical analysis on 2-deoxyglucose images, taken over the entire bulb of glomerular layer of the rat, in order to see how the recognition of odors in the nose is translated into a map of odor quality in the brain. We first confirm previous studies that the first principal component could be related to pleasantness, however the next higher principal components are not directly clear. We then find mostly continuous spatial representations for perceptual categories. We compare the space spanned by spatial and population codes to human reports of perceptual similarity between odors and our results suggest that perceptual categories could be already embedded in glomerular activations and that spatial representations give a better match than population codes. This suggests that human and rat perceptual dimensions of odorant coding are related and indicates that perceptual qualities could be represented as continuous spatial codes of the olfactory bulb glomerulus population.This Document is Protected by copyright and was first published by Frontiers. All rights reserved. It is reproduced with permission QC 20111116Neuroche

    Data set from gas sensor array under flow modulation

    Get PDF
    Recent studies in neuroscience suggest that sniffing, namely sampling odors actively, plays an important role in olfactory system, especially in certain scenarios such as novel odorant detection. While the computational advantages of high frequency sampling have not been yet elucidated, here, in order to motivate further investigation in active sampling strategies, we share the data from an artificial olfactory system made of 16 MOX gas sensors under gas flow modulation. The data were acquired on a custom set up featured by an external mechanical ventilator that emulates the biological respiration cycle. 58 samples were recorded in response to a relatively broad set of 12 gas classes, defined from different binary mixtures of acetone and ethanol in air. The acquired time series show two dominant frequency bands: the low-frequency signal corresponds to a conventional response curve of a sensor in response to a gas pulse, and the high-frequency signal has a clear principal harmonic at the respiration frequency. The data are related to the study in [1], and the data analysis results reported there should be considered as a reference point.Postprint (published version

    A practical method to estimate the resolving power of a chemical sensor array: application to feature selection

    No full text
    A methodology to calculate analytical figures of merit is not well established for detection systems that are based on sensor arrays with low sensor selectivity. In this work, we present a practical approach to estimate the Resolving Power of a sensory system, considering non-linear sensors and heteroscedastic sensor noise. We use the definition introduced by Shannon in the field of communication theory to quantify the number of symbols in a noisy environment, and its version adapted by Gardner and Barlett for chemical sensor systems. Our method combines dimensionality reduction and the use of algorithms to compute the convex hull of the empirical data to estimate the data volume in the sensor response space. We validate our methodology with synthetic data and with actual data captured with temperature-modulated MOX gas sensors. Unlike other methodologies, our method does not require the intrinsic dimensionality of the sensor response to be smaller than the dimensionality of the input space. Moreover, our method circumvents the problem to obtain the sensitivity matrix, which usually is not known. Hence, our method is able to successfully compute the Resolving Power of actual chemical sensor arrays. We provide a relevant figure of merit, and a methodology to calculate it, that was missing in the literature to benchmark broad-response gas sensor arrays.Peer Reviewe

    Data set from gas sensor array under flow modulation

    No full text
    Recent studies in neuroscience suggest that sniffing, namely sampling odors actively, plays an important role in olfactory system, especially in certain scenarios such as novel odorant detection. While the computational advantages of high frequency sampling have not been yet elucidated, here, in order to motivate further investigation in active sampling strategies, we share the data from an artificial olfactory system made of 16 MOX gas sensors under gas flow modulation. The data were acquired on a custom set up featured by an external mechanical ventilator that emulates the biological respiration cycle. 58 samples were recorded in response to a relatively broad set of 12 gas classes, defined from different binary mixtures of acetone and ethanol in air. The acquired time series show two dominant frequency bands: the low-frequency signal corresponds to a conventional response curve of a sensor in response to a gas pulse, and the high-frequency signal has a clear principal harmonic at the respiration frequency. The data are related to the study in [1], and the data analysis results reported there should be considered as a reference point

    Bioinspired early detection through gas flow modulation in chemo-sensory systems

    No full text
    The design of bioinspired systems for chemical sensing is an engaging line of research in machine olfaction. Developments in this line could increase the lifetime and sensitivity of artificial chemo-sensory systems. Such approach is based on the sensory systems known in live organisms, and the resulting developed artificial systems are targeted to reproduce the biological mechanisms to some extent. Sniffing behaviour, sampling odours actively, has been studied recently in neuroscience, and it has been suggested that the respiration frequency is an important parameter of the olfactory system, since the odour perception, especially in complex scenarios such as novel odourants exploration, depends on both the stimulus identity and the sampling method. In this work we propose a chemical sensing system based on an array of 16 metal-oxide gas sensors that we combined with an external mechanical ventilator to simulate the biological respiration cycle. The tested gas classes formed a relatively broad combination of two analytes, acetone and ethanol, in binary mixtures. Two sets of low-frequency and high-frequency features were extracted from the acquired signals to show that the high-frequency features contain information related to the gas class. In addition, such information is available at early stages of the measurement, which could make the technique suitable in early detection scenarios. The full data set is made publicly available to the community. (C) 2014 Elsevier B.V. All rights reserved

    Bioinspired early detection through gas flow modulation in chemo-sensory systems

    No full text
    The design of bioinspired systems for chemical sensing is an engaging line of research in machine olfaction. Developments in this line could increase the lifetime and sensitivity of artificial chemo-sensory systems. Such approach is based on the sensory systems known in live organisms, and the resulting developed artificial systems are targeted to reproduce the biological mechanisms to some extent. Sniffing behaviour, sampling odours actively, has been studied recently in neuroscience, and it has been suggested that the respiration frequency is an important parameter of the olfactory system, since the odour perception, especially in complex scenarios such as novel odourants exploration, depends on both the stimulus identity and the sampling method. In this work we propose a chemical sensing system based on an array of 16 metal-oxide gas sensors that we combined with an external mechanical ventilator to simulate the biological respiration cycle. The tested gas classes formed a relatively broad combination of two analytes, acetone and ethanol, in binary mixtures. Two sets of low-frequency and high-frequency features were extracted from the acquired signals to show that the high-frequency features contain information related to the gas class. In addition, such information is available at early stages of the measurement, which could make the technique suitable in early detection scenarios. The full data set is made publicly available to the community. (C) 2014 Elsevier B.V. All rights reserved
    corecore